Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components.

نویسندگان

  • Mahmoud El-Shami
  • Dominique Pontier
  • Sylvie Lahmy
  • Laurence Braun
  • Claire Picart
  • Danielle Vega
  • Mohamed-Ali Hakimi
  • Steven E Jacobsen
  • Richard Cooke
  • Thierry Lagrange
چکیده

Two forms of RNA Polymerase IV (PolIVa/PolIVb) have been implicated in RNA-directed DNA methylation (RdDM) in Arabidopsis. Prevailing models imply a distinct function for PolIVb by association of Argonaute4 (AGO4) with the C-terminal domain (CTD) of its largest subunit NRPD1b. Here we show that the extended CTD of NRPD1b-type proteins exhibits conserved Argonaute-binding capacity through a WG/GW-rich region that functionally distinguishes Pol IVb from Pol IVa, and that is essential for RdDM. Site-specific mutagenesis and domain-swapping experiments between AtNRPD1b and the human protein GW182 demonstrated that reiterated WG/GW motifs form evolutionarily and functionally conserved Argonaute-binding platforms in RNA interference (RNAi)-related components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis

Domains in Arabidopsis proteins NRPE1 and SPT5-like, composed almost exclusively of repeated motifs in which only WG or GW sequences and an overall amino-acid preference are conserved, have been experimentally shown to bind multiple molecules of Argonaute (AGO) protein(s). Domain swapping between the WG/GW domains of NRPE1 and the human protein GW182 showed a conserved function. As classical se...

متن کامل

The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression

The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interferenc...

متن کامل

Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs

RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins. These viral proteins can target one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus (SPMMV, type m...

متن کامل

Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs

MOTIVATION Argonaute-interacting WG/GW proteins are characterized by the presence of repeated sequence motifs containing glycine (G) and tryptophan (W). The motifs seem to be remarkably adaptive to amino acid substitutions and their sequences show non-contiguity. Our previous approach to the detection of GW domains, based on scoring their gross amino acid composition, allowed annotation of seve...

متن کامل

RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family.

Recent studies have identified a conserved WG/GW-containing motif, known as the Argonaute (AGO) hook, which is involved in the recruitment of AGOs to distinct components of the eukaryotic RNA silencing pathways. By using this motif as a model to detect new components in plant RNA silencing pathways, we identified SPT5-like, a plant-specific AGO4-interacting member of the nuclear SPT5 (Suppresso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 21 20  شماره 

صفحات  -

تاریخ انتشار 2007